Boken 'Topology of Numbers' fungerer som en innføring i tallteori på undergraduate-nivå, med vekt på de geometriske aspektene ved emnet. Den geometriske tilnærmingen benyttes for å utforske det klassiske temaet kvadratiske former med heltallskoeffisienter, som utgjør en sentral del av innholdet. Kvadratiske former i to variabler har en rik teori, utviklet hovedsakelig av matematikere som Euler, Lagrange, Legendre og Gauss i perioden 1750-1800. I denne boken moderniseres deres tilnærming ved å benytte det imponerende visualiseringsverktøyet kalt topografen av en kvadratisk form, introdusert av John Conway på 1990-tallet. Utover den iboende interessen for kvadratiske former, har denne teorien også fungert som et springbrett for mange senere utviklinger innen algebra og tallteori. Boken er tilgjengelig for studenter med grunnleggende kunnskaper i lineær algebra og aritmetikk modulo n, og noe kjennskap til matematiske bevis vil også være nyttig. De tidlige kapitlene fokuserer mer på eksempler enn på generelle teoremer, noe som gjør det lettere for leserne å forstå de grunnleggende konseptene.